This is a review submitted to Mathematical Reviews/MathSciNet.
Reviewer Name: Konstantopoulos, Takis
Mathematical Reviews/MathSciNet Reviewer Number: 68397

Address:

Department of Mathematics
Uppsala University
PO Box 480
SE-75106 Uppsala
SWEDEN
takis@math.uu.se
Author: Pitman, Jim; Ross, Nathan
Title: The greatest convex minorant of Brownian motion, meander, and bridge.
MR Number: MR2948693
Primary classification:
Secondary classification(s):

Review text:

The greatest convex minorant of a given real valued function on a closed interval I is the largest convex function which is below the given function on I. Continuing work by Jim Pitman, in this article, the authors study the greatest convex minorant of a Brownian motion on an interval $\left[0, \Gamma_{1}\right]$, with Γ_{1} an independent exponential random variable, and related stochastic processes. Two descriptions of this minorant are provided, one in terms of a Poisson point process and another in terms of a stochastic recursion.
Focusing on Brownian motion B on $\left[0, \Gamma_{1}\right]$, one observes that the greatest convex minorant is a piecewise linear process with finitely many segments on every open interval contained in $\left[0, \Gamma_{1}\right]$, and accumulation points at the ends. The first main theorem states that if we consider the set of points (x, s), where x is the length of a face and s its slope, then this set is a Poisson point process on $\mathbb{R}_{+} \times \mathbb{R}$ with intensity

$$
\frac{\exp \left(-x\left(2+s^{2}\right) / 2\right)}{\sqrt{2 \pi x}}
$$

Letting $0<\cdots<\alpha_{-1}<\alpha_{0}<\alpha_{1}<\cdots<1$ be the times of the breakpoints of the greatest convex minorant of a B on $[0,1]$, where α_{0} is the time of global minimum $M=B\left(\alpha_{0}\right)=\min _{0 \leq t \leq 1} B(t)$ of B on $[0,1]$, a sequential description of these times, together with the slopes of the faces, is obtained by making use of Denisov's decomposition: conditional on α_{0}, the processes $B\left(\alpha_{0}+u\right)-M$, $0 \leq u \leq 1-\alpha_{0}$ and $B\left(\alpha_{0}-u\right)-M, 0 \leq u \leq \alpha_{0}$, are independent Brownian meanders of lengths $1-\alpha_{0}$ and α_{0}.

A certain stochastic recursion, termed as (τ, ρ)-recursion is key to the sequential description of the greatest convex minorant. There are several interesting and non-obvious distributional properties associated with this recursion and which are proved in this paper by using the relation of the recursion to the process. (Independent proofs are not available.) A central limit theorem for the recursion is also obtain by making use of positive recurrent Harris chain theory.
In addition, there are results about the greatest convex minorant of a $\operatorname{BES}^{0}(3)$ process and a $\operatorname{BES}(3)$ bridge The paper is very interesting, it is remarkable that such explicit results are available, and may lead to further research on related problems.

